Characteristics and properties of graphene, a revolutionary material in construction

Main Article Content

Ember Geovanny Zumba Novay
Daniela Estefanía Cuenca Pérez
Pablo Geovanny Andrade Santillán
Holger Patricio Castillo Mazón

Abstract

Research concerning the potential of graphene in the construction industry, the study of its properties and its influence on traditional building materials is abundant. It was investigated that graphene contains carbon atoms located in a hexagonal structure, with which we assure a revolution and development in the construction of buildings and structures. With the objective of demonstrating its high mechanical resistance, as well as determining its durability and reinforcement in composite materials. For the research we considered points such as its high thermal and electrical conductivity that makes the material attractive, increasing energy efficiency and reducing construction costs. A qualitative methodology that collects non-numerical data was established for the research. This scientific paper emphasized the exceptional mechanical, electrical and thermal properties of graphene, material consisting of carbon atoms. The advantages of including graphene in construction materials, such as increased strength, conductivity and durability, were recorded. The implementation of graphene remains costly due to complex processes and high purity despite being a recyclable and sustainable material found in abundance in nature.

Downloads

Download data is not yet available.

Article Details

How to Cite
Zumba Novay, E. G. ., Cuenca Pérez, D. E. ., Andrade Santillán, P. G. ., & Castillo Mazón, H. P. . (2025). Characteristics and properties of graphene, a revolutionary material in construction. Espirales Revista Multidisciplinaria De investigación, 9(2), 1–15. https://doi.org/10.31876/er.v9i2.882
Section
Artículos
Share |

References

Bautista, T., & Revoredo, L. (2018). Propiedades del grafeno y sus aplicaciones en el campo energético. Campus, 23, 175-186. https://doi.org/10.24265/campus.2018.v23n26.08

Cao, M., Xiong, D.-B., Yang, L., Li, S., Xie, Y., Guo, Q., Li, Z., Adams, H., Gu, J., Fan, T., Zhang, X., & Zhang, D. (2019). Ultrahigh Electrical Conductivity of Graphene Embedded in Metals. Advanced Functional Materials, 29(17), 1806792. https://doi.org/10.1002/adfm.201806792

Carreon, U. A. (2016). Graphene as a revolutionary material. Entretextos, 8(24), 1-8. https://doi.org/10.59057/iberoleon.20075316.201624350

Carrión V., M. V., & Pilaquinga F., F. (2020). Nanotechnology applied in refractory materials: A review. InfoANALÍTICA, 8(2), 21-45. https://doi.org/10.26807/ia.v8i2.141

Chen, C., Qiu, S., Cui, M., Qin, S., Yan, G., Zhao, H., Wang, L., & Xue, Q. (2017). Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene. Carbon, 114, 356-366. https://doi.org/10.1016/j.carbon.2016.12.044

Cheng, C., Blakers, A., Stocks, M., & Lu, B. (2022). 100% renewable energy in Japan. Energy Conversion and Management, 255, 115299. https://doi.org/10.1016/j.enconman.2022.115299

Ching, F. D. K. (2023). Architectural Graphics. John Wiley & Sons.

Dahlan, A. S. (2019). Smart and functional materials based nanomaterials in construction styles in nano-architecture. Silicon, 11(4), 1949–1953. https://doi.org/10.1007/S12633-018-0015-X

de Abreu, H., Iglesias, M. Á. G., Martins, I. G. D. S., Martins, Â. V. D. S., González, J. Q., Rovai, A. L., & Salles, P. S. N. (2017). Grafeno, innovación, derecho y economía: Estudios en homenaje al profesor Marcos Sacristán Represa (1.a ed.). J.M Bosch. https://www.jstor.org/stable/j.ctvr33b53

Fonseca, J. S., Semmer, A. D. O., & Da Silva, S. N. (2017). Características e aplicações do grafeno e do óxido de grafeno e as principais rotas para síntese. The Journal of Engineering and Exact Sciences, 3(8), 1118-1130. https://doi.org/10.18540/jcecvl3iss8pp1118-1130

Ghany, N. A. A., Elsherif, S. A., & Handal, H. T. (2017). Revolution of Graphene for different applications: State-of-the-art. Surfaces and Interfaces, 9, 93-106. https://doi.org/10.1016/j.surfin.2017.08.004

Gómez, A., Mondragón, G., Alvarado, J. M., & Camacho, N. (2021). Retos actuales y futuros en implantes de rodilla y cadera. Revista Colombiana De Materiales, 16, 29-56. https://doi.org/10.17533/udea.rcm.n16a02

Gómez, M. J., Franceschini, E. A., Corti, H. R., & Lacconi, G. I. (2018). Síntesis y propiedades de electrodos de níquel/grafeno para generación de hidrógeno. Materia (Rio de Janeiro, 23(2), e12128. https://doi.org/10.1590/s1517-707620180002.0462

Guacho, E., Padilla, C., Buenaño, L., & Cuaical, B. (2019). Obtención de capas de grafeno a través de la exfoliación mecánica del grafito. Ciencia Digital, 3(1), 313-332 https://doi.org/10.33262/cienciadigital.v3i1.294

Gutiérrez, K. N., Morales, E., Chávez, R., & Luna, G. A. (2022). Investigación científica del grafeno en la industria de la construcción (estado del arte). Ingeniería Industrial, 11-24. https://doi.org/10.26439/ING.IND2022.N.5798

Kabiri, S., Baird, R., Tran, D. N. H., Andelkovic, I., McLaughlin, M. J., & Losic, D. (2018). Cogranulation of Low Rates of Graphene and Graphene Oxide with Macronutrient Fertilizers Remarkably Improves Their Physical Properties. ACS Sustainable Chemistry & Engineering, 6(1), 1299-1309. https://doi.org/10.1021/acssuschemeng.7b03655

Li, P., Zheng, Y., Shi, T., Wang, Y., Li, M., Chen, C., & Zhang, J. (2016). A solvent-free graphene oxide nanoribbon colloid as filler phase for epoxy-matrix composites with enhanced mechanical, thermal and tribological performance. Carbon, 96, 40-48. https://doi.org/10.1016/j.carbon.2015.09.035

Martínez-González, J., Flores Gil, A., Reyes-Contreras, D., Vigueras Santiago, E., & García-Orozco, I. (2022). Síntesis de nano estructuras de carbono por molienda mecánica. En E. Vigueras Santiago y G. Martínez Barrera (Ed .), Materiales Avanzados y Nanomateriales: aprovechamiento de fuentes naturales y sus beneficios al medio ambiente (pp . 201-238). Barcelona, España: Omnia Science. https://doi.org/10.3926/oms.409.08

Mayora, C., Cremades, L. V., & Cusidó, J. (2015). Graphene. Part ii: processes and feasibility of its production. DYNA Ingeniería e Industria, 90(3), 344-347. https://doi.org/10.6036/7386

Merizalde-Salas, A., Zumba-Novay, E., & Peralta-Zurita, D. B. (2023). Alternative material for the plastic injection molding of the Kia Rio’s ventilation grille. Interdisciplinary Scientific Journal Research and Knowledge, 13(1), 1390–8146. http://revistasdigitales.utelvt.edu.ec/revista/index.php/investigacion_y_saberes/article/view/197/249

Nagayama, T., & Spencer, B. F. (2007). Structural Health Monitoring Using Smart Sensors. Newmark Structural Engineering Laboratory Report Series 001. https://hdl.handle.net/2142/3521

Nguyen, B. H., & Nguyen, V. H. (2016). Promising applications of graphene and graphene-based nanostructures. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(2), 023002. https://doi.org/10.1088/2043-6262/7/2/023002

Padilla, C. A., Buenaño-Moyano, L. F., Cuaical-Angulo, B. A., Ramos-Flores, J. M., Sánchez-Chávez, L. H., & Caicedo-Reyes, J. I. (2018). Aplicación del grafeno en baterías para vehículos eléctricos. Polo del Conocimiento, 3(6), 307-335 https://doi.org/10.23857/pc.v3i6.579

Polit, L. F. V., Chico, A. T. R., Chimbo, C. G. C., Paladines, E. A. B., & Naranjo, A. A. (2022). El futuro de la anticoncepción: Preservativos a base de grafeno y nanolubricados. La ciencia al servicio de la salud y nutrición, 13(Ed.Esp.), Article Ed.Esp. https://doi.org/10.47187/cssn.vol13.issed.esp..184

Sabry, F. (2022). Graphene: The key to clean, and unlimited energy, so the next generation of smart devices could be powered by nano-scale power generators. One Billion Knowledgeable.

Solórzano, R. U., Solano, K. V. C., & Flores, D. A. G. (2021). Perspectivas y aplicaciones reales del grafeno después de 16 años de su descubrimiento. Revista Colombiana de Química, 51-85. https://doi.org/10.15446/rev.colomb.quim.v50n1.90134

Suhendro, B. (2014). Toward Green Concrete for Better Sustainable Environment. Procedia Engineering, 95, 305-320. https://doi.org/10.1016/j.proeng.2014.12.190

Sumdani, M. G., Islam, M. R., Yahaya, A. N. A., & Safie, S. I. (2021). Recent advances of the graphite exfoliation processes and structural modification of graphene: A review. Journal of Nanoparticle Research, 23(11), 253. https://doi.org/10.1007/s11051-021-05371-6

Tsioptsias, C., Leontiadis, K., Tzimpilis, E., & Tsivintzelis, I. (2021). Polypropylene nanocomposite fibers: A review of current trends and new developments. Journal of Plastic Film & Sheeting, 37(3), 283-311. https://doi.org/10.1177/8756087920972146

van den Brink, J. (2010). Graphene: What lies between. Nature Materials, 9(4), 291–292. https://doi.org/10.1038/NMAT2733

Wan, X., Huang, Y., & Chen, Y. (2012). Focusing on Energy and Optoelectronic Applications: A Journey for Graphene and Graphene Oxide at Large Scale. Accounts of Chemical Research, 45(4), 598-607. https://doi.org/10.1021/ar200229q

Weiss, N. O., Zhou, H., Liao, L., Liu, Y., Jiang, S., Huang, Y., & Duan, X. (2012). Graphene: An Emerging Electronic Material. Advanced Materials, 24(43), 5782-5825. https://doi.org/10.1002/adma.201201482

Zaporotskova, I. V., Boroznina, N. P., Parkhomenko, Y. N., & Kozhitov, L. V. (2016). Carbon nanotubes: Sensor properties. A review. Modern Electronic Materials, 2(4), 95-105. https://doi.org/10.1016/j.moem.2017.02.002

Zumba, E. (2024). Libro de ingenieria de materiales metalicos. Caracola.

Zumba, E. G. (2021). Optimización en el proceso de fabricación por impresión 3d de la manija del elevador de vidrios del vehículo Chevrolet Aveo Family para la mejora de propiedades mecánicas y térmicas. [Tesis de Maestría, UISEK], http://localhost:8080/xmlui/handle/123456789/4074

Zumba, E. G., Santillan, C. J., Cuenca, D. E., & Espinoza, J. D. (2025). Comparison of Properties (stress, resistance and deformation) between low and high carbon steel. Revista Tecnológica Ciencia Y Educación Edwards Deming, 9(1), 1-17. https://doi.org/10.37957/RFD.V9I1.141