Characteristics and properties of graphene, a revolutionary material in construction
Main Article Content
Abstract
Research concerning the potential of graphene in the construction industry, the study of its properties and its influence on traditional building materials is abundant. It was investigated that graphene contains carbon atoms located in a hexagonal structure, with which we assure a revolution and development in the construction of buildings and structures. With the objective of demonstrating its high mechanical resistance, as well as determining its durability and reinforcement in composite materials. For the research we considered points such as its high thermal and electrical conductivity that makes the material attractive, increasing energy efficiency and reducing construction costs. A qualitative methodology that collects non-numerical data was established for the research. This scientific paper emphasized the exceptional mechanical, electrical and thermal properties of graphene, material consisting of carbon atoms. The advantages of including graphene in construction materials, such as increased strength, conductivity and durability, were recorded. The implementation of graphene remains costly due to complex processes and high purity despite being a recyclable and sustainable material found in abundance in nature.
Downloads
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Licensing Agreement
This journal provides free access to its content through its website following the principle that making research available free of charge to the public supports a larger exchange of global knowledge.
Web content of the journal is distributed under a Attribution-NonCommercial-ShareAlike 4.0 International.
Authors may adopt other non-exclusive license agreements for the distribution of the version of the published work, provided that the initial publication in this journal is indicated. Authors are allowed and recommended to disseminate their work through the internet before and during the submission process, which can produce interesting exchanges and increase citations of the published work.
References
Bautista, T., & Revoredo, L. (2018). Propiedades del grafeno y sus aplicaciones en el campo energético. Campus, 23, 175-186. https://doi.org/10.24265/campus.2018.v23n26.08
Cao, M., Xiong, D.-B., Yang, L., Li, S., Xie, Y., Guo, Q., Li, Z., Adams, H., Gu, J., Fan, T., Zhang, X., & Zhang, D. (2019). Ultrahigh Electrical Conductivity of Graphene Embedded in Metals. Advanced Functional Materials, 29(17), 1806792. https://doi.org/10.1002/adfm.201806792
Carreon, U. A. (2016). Graphene as a revolutionary material. Entretextos, 8(24), 1-8. https://doi.org/10.59057/iberoleon.20075316.201624350
Carrión V., M. V., & Pilaquinga F., F. (2020). Nanotechnology applied in refractory materials: A review. InfoANALÍTICA, 8(2), 21-45. https://doi.org/10.26807/ia.v8i2.141
Chen, C., Qiu, S., Cui, M., Qin, S., Yan, G., Zhao, H., Wang, L., & Xue, Q. (2017). Achieving high performance corrosion and wear resistant epoxy coatings via incorporation of noncovalent functionalized graphene. Carbon, 114, 356-366. https://doi.org/10.1016/j.carbon.2016.12.044
Cheng, C., Blakers, A., Stocks, M., & Lu, B. (2022). 100% renewable energy in Japan. Energy Conversion and Management, 255, 115299. https://doi.org/10.1016/j.enconman.2022.115299
Ching, F. D. K. (2023). Architectural Graphics. John Wiley & Sons.
Dahlan, A. S. (2019). Smart and functional materials based nanomaterials in construction styles in nano-architecture. Silicon, 11(4), 1949–1953. https://doi.org/10.1007/S12633-018-0015-X
de Abreu, H., Iglesias, M. Á. G., Martins, I. G. D. S., Martins, Â. V. D. S., González, J. Q., Rovai, A. L., & Salles, P. S. N. (2017). Grafeno, innovación, derecho y economía: Estudios en homenaje al profesor Marcos Sacristán Represa (1.a ed.). J.M Bosch. https://www.jstor.org/stable/j.ctvr33b53
Fonseca, J. S., Semmer, A. D. O., & Da Silva, S. N. (2017). Características e aplicações do grafeno e do óxido de grafeno e as principais rotas para síntese. The Journal of Engineering and Exact Sciences, 3(8), 1118-1130. https://doi.org/10.18540/jcecvl3iss8pp1118-1130
Ghany, N. A. A., Elsherif, S. A., & Handal, H. T. (2017). Revolution of Graphene for different applications: State-of-the-art. Surfaces and Interfaces, 9, 93-106. https://doi.org/10.1016/j.surfin.2017.08.004
Gómez, A., Mondragón, G., Alvarado, J. M., & Camacho, N. (2021). Retos actuales y futuros en implantes de rodilla y cadera. Revista Colombiana De Materiales, 16, 29-56. https://doi.org/10.17533/udea.rcm.n16a02
Gómez, M. J., Franceschini, E. A., Corti, H. R., & Lacconi, G. I. (2018). Síntesis y propiedades de electrodos de níquel/grafeno para generación de hidrógeno. Materia (Rio de Janeiro, 23(2), e12128. https://doi.org/10.1590/s1517-707620180002.0462
Guacho, E., Padilla, C., Buenaño, L., & Cuaical, B. (2019). Obtención de capas de grafeno a través de la exfoliación mecánica del grafito. Ciencia Digital, 3(1), 313-332 https://doi.org/10.33262/cienciadigital.v3i1.294
Gutiérrez, K. N., Morales, E., Chávez, R., & Luna, G. A. (2022). Investigación científica del grafeno en la industria de la construcción (estado del arte). Ingeniería Industrial, 11-24. https://doi.org/10.26439/ING.IND2022.N.5798
Kabiri, S., Baird, R., Tran, D. N. H., Andelkovic, I., McLaughlin, M. J., & Losic, D. (2018). Cogranulation of Low Rates of Graphene and Graphene Oxide with Macronutrient Fertilizers Remarkably Improves Their Physical Properties. ACS Sustainable Chemistry & Engineering, 6(1), 1299-1309. https://doi.org/10.1021/acssuschemeng.7b03655
Li, P., Zheng, Y., Shi, T., Wang, Y., Li, M., Chen, C., & Zhang, J. (2016). A solvent-free graphene oxide nanoribbon colloid as filler phase for epoxy-matrix composites with enhanced mechanical, thermal and tribological performance. Carbon, 96, 40-48. https://doi.org/10.1016/j.carbon.2015.09.035
Martínez-González, J., Flores Gil, A., Reyes-Contreras, D., Vigueras Santiago, E., & García-Orozco, I. (2022). Síntesis de nano estructuras de carbono por molienda mecánica. En E. Vigueras Santiago y G. Martínez Barrera (Ed .), Materiales Avanzados y Nanomateriales: aprovechamiento de fuentes naturales y sus beneficios al medio ambiente (pp . 201-238). Barcelona, España: Omnia Science. https://doi.org/10.3926/oms.409.08
Mayora, C., Cremades, L. V., & Cusidó, J. (2015). Graphene. Part ii: processes and feasibility of its production. DYNA Ingeniería e Industria, 90(3), 344-347. https://doi.org/10.6036/7386
Merizalde-Salas, A., Zumba-Novay, E., & Peralta-Zurita, D. B. (2023). Alternative material for the plastic injection molding of the Kia Rio’s ventilation grille. Interdisciplinary Scientific Journal Research and Knowledge, 13(1), 1390–8146. http://revistasdigitales.utelvt.edu.ec/revista/index.php/investigacion_y_saberes/article/view/197/249
Nagayama, T., & Spencer, B. F. (2007). Structural Health Monitoring Using Smart Sensors. Newmark Structural Engineering Laboratory Report Series 001. https://hdl.handle.net/2142/3521
Nguyen, B. H., & Nguyen, V. H. (2016). Promising applications of graphene and graphene-based nanostructures. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(2), 023002. https://doi.org/10.1088/2043-6262/7/2/023002
Padilla, C. A., Buenaño-Moyano, L. F., Cuaical-Angulo, B. A., Ramos-Flores, J. M., Sánchez-Chávez, L. H., & Caicedo-Reyes, J. I. (2018). Aplicación del grafeno en baterías para vehículos eléctricos. Polo del Conocimiento, 3(6), 307-335 https://doi.org/10.23857/pc.v3i6.579
Polit, L. F. V., Chico, A. T. R., Chimbo, C. G. C., Paladines, E. A. B., & Naranjo, A. A. (2022). El futuro de la anticoncepción: Preservativos a base de grafeno y nanolubricados. La ciencia al servicio de la salud y nutrición, 13(Ed.Esp.), Article Ed.Esp. https://doi.org/10.47187/cssn.vol13.issed.esp..184
Sabry, F. (2022). Graphene: The key to clean, and unlimited energy, so the next generation of smart devices could be powered by nano-scale power generators. One Billion Knowledgeable.
Solórzano, R. U., Solano, K. V. C., & Flores, D. A. G. (2021). Perspectivas y aplicaciones reales del grafeno después de 16 años de su descubrimiento. Revista Colombiana de Química, 51-85. https://doi.org/10.15446/rev.colomb.quim.v50n1.90134
Suhendro, B. (2014). Toward Green Concrete for Better Sustainable Environment. Procedia Engineering, 95, 305-320. https://doi.org/10.1016/j.proeng.2014.12.190
Sumdani, M. G., Islam, M. R., Yahaya, A. N. A., & Safie, S. I. (2021). Recent advances of the graphite exfoliation processes and structural modification of graphene: A review. Journal of Nanoparticle Research, 23(11), 253. https://doi.org/10.1007/s11051-021-05371-6
Tsioptsias, C., Leontiadis, K., Tzimpilis, E., & Tsivintzelis, I. (2021). Polypropylene nanocomposite fibers: A review of current trends and new developments. Journal of Plastic Film & Sheeting, 37(3), 283-311. https://doi.org/10.1177/8756087920972146
van den Brink, J. (2010). Graphene: What lies between. Nature Materials, 9(4), 291–292. https://doi.org/10.1038/NMAT2733
Wan, X., Huang, Y., & Chen, Y. (2012). Focusing on Energy and Optoelectronic Applications: A Journey for Graphene and Graphene Oxide at Large Scale. Accounts of Chemical Research, 45(4), 598-607. https://doi.org/10.1021/ar200229q
Weiss, N. O., Zhou, H., Liao, L., Liu, Y., Jiang, S., Huang, Y., & Duan, X. (2012). Graphene: An Emerging Electronic Material. Advanced Materials, 24(43), 5782-5825. https://doi.org/10.1002/adma.201201482
Zaporotskova, I. V., Boroznina, N. P., Parkhomenko, Y. N., & Kozhitov, L. V. (2016). Carbon nanotubes: Sensor properties. A review. Modern Electronic Materials, 2(4), 95-105. https://doi.org/10.1016/j.moem.2017.02.002
Zumba, E. (2024). Libro de ingenieria de materiales metalicos. Caracola.
Zumba, E. G. (2021). Optimización en el proceso de fabricación por impresión 3d de la manija del elevador de vidrios del vehículo Chevrolet Aveo Family para la mejora de propiedades mecánicas y térmicas. [Tesis de Maestría, UISEK], http://localhost:8080/xmlui/handle/123456789/4074
Zumba, E. G., Santillan, C. J., Cuenca, D. E., & Espinoza, J. D. (2025). Comparison of Properties (stress, resistance and deformation) between low and high carbon steel. Revista Tecnológica Ciencia Y Educación Edwards Deming, 9(1), 1-17. https://doi.org/10.37957/RFD.V9I1.141